The GHZ experiment cartoon
I'm still a bit obsessed with the GHZ experiment. This is the one where you prepare a GHZ state $\lvert 000 \rangle + \lvert 111 \rangle$ and send one qubit to each of 3 protagonists: Alice, Bob, and Charlie. (I will be ignoring shared normalizer constants throughout this post, as I find they don't add anything to the understanding.) If you do the maths it turns out that when all three choose to measure in the $\lvert + \rangle$, $\lvert - \rangle$ basis (shorthand for $\lvert 0 \rangle + \lvert 1\rangle$ and $\lvert 0 \rangle - \lvert 1\rangle$) then they are guarranteed to get a parity zero result. On the other hand if only one measures in this basis and the other two measure in the $\lvert +i\rangle$, $\lvert -i\rangle$ basis (shorthand for $\lvert 0 \rangle + i\lvert 1\rangle$ and $\lvert 0 \rangle - i\lvert 1\rangle$) they are guarranteed to get a parity one result. As I showed in an earlier post this appears to be incompatible with the outcomes being prede...