Below absolute zero
Is it possible to bring a temperature below absolute zero? And if so, what does, say, -1K look like? Surprisingly, negative temperatures are in fact possible, but only in some circumstances. To understand how, we need to get a better idea of what temperature actually means from a statistical thermodynamics point of view. Suppose you have a system of $N$ particles$^{\dagger}$, each of which can have an energy level from a discrete list $$ 0 < E_1 < E_2 < E_3 < ... $$ Now suppose that there are $N_1$ particles in state $E_1$, $N_2$ in $E_2$ and so on. Using combinatorics$^{\dagger_2}$ we can see that the number of ways this particular configuration can be achieved is given by $$ \Omega = \frac{N!}{N_1!N_2!N_3!...} $$ The next question is: if we know the total energy of the system $E_{total}$ can we work out the distribution of particles across the energy states? Well, we know the most likely distribution is that which can be achieved in the greatest number of ways. I.e. we...