Determinants and parallelepipeds
Connecting Geometry and Algebra Matrix determinants have the following strange definition that seems to have been pulled out of thin air: $$ det(A) = \sum_{\sigma}{sign(\sigma)a_{1\sigma(1)}...a_{n\sigma(n)}} $$ where $A = (a_{ij})$ is a real $n\times n$ matrix $\sigma$ ranges over all permutations of $\{1,...,n\}$ $sign(\sigma)$ is $+1$ if $\sigma$ is a product of an even number of transpositions and $-1$ otherwise$^\dagger$ However, in the geometric world the definition is far more intuitive: The determinant of A is the volume of the parallelepiped formed by its columns, multiplied by minus one if these have the opposite handedness to the unit vectors. Why are these two definitions the same? To begin to answer this we need to first define elementary matrices and then show that every square matrix can be written as a product of these. Definition The elementary matrices are $E_{i, j}$ for $1 \le i,j \le n$ $E_{i,\lambda}$ for every real $\lambda$ and $...